summaryrefslogtreecommitdiff
path: root/tooling/vercel-ai-sdk/.claude/commands/ai-experimental-setup.md
blob: 80d83ffe63fe88e29f9fdc06f3d42c3490a99947 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
---
allowed-tools: Read, Write, Edit, MultiEdit, Bash
description: Enable cutting-edge experimental AI SDK features safely
argument-hint: "[beta|experimental|research|custom]"
---

## Enable Experimental AI SDK Features

Configure and safely enable cutting-edge AI SDK experimental features: $ARGUMENTS

### Current Experimental Status

Existing experimental features: !`grep -r "experimental\|beta\|alpha" . --include="*.ts" --include="*.json" | head -5`

Feature flags: !`grep -r "ENABLE_\|FLAG_" .env* 2>/dev/null | head -3 || echo "No feature flags found"`

Advanced configurations: !`grep -r "streamingTimeouts\|thinkingMode\|toolCallStreaming" . --include="*.ts" | head -5`

### Experimental Feature Categories

**Beta Features**: Stable experimental features ready for production testing
**Experimental**: Cutting-edge features in active development
**Research**: Bleeding-edge research features for experimentation
**Custom**: Custom experimental implementations and modifications

### Your Task

1. **Analyze experimental feature landscape** and identify safe options
2. **Implement feature flag system** for controlled rollouts
3. **Configure experimental AI SDK options** with proper safeguards
4. **Set up A/B testing framework** for feature validation
5. **Add monitoring and telemetry** for experimental features
6. **Create fallback mechanisms** for experimental feature failures
7. **Implement gradual rollout strategy** with user controls
8. **Add comprehensive testing** for experimental features

### Implementation Requirements

#### Feature Flag System

- Environment-based feature control
- User-level feature toggles
- Percentage-based rollouts
- Real-time feature flag updates
- Fallback mechanisms for failures

#### Safety Measures

- Automatic fallback to stable features
- Error isolation and reporting
- Performance impact monitoring
- User experience protection
- Data integrity guarantees

#### Experimental Configuration

- Advanced streaming options
- Cutting-edge model features
- Research-level AI capabilities
- Custom provider integrations
- Performance optimizations

### Expected Deliverables

1. **Feature flag system** with environment and user controls
2. **Experimental AI SDK configurations** with safety controls
3. **A/B testing framework** for feature validation
4. **Monitoring and telemetry** for experimental features
5. **Fallback mechanisms** for reliability
6. **Documentation** for experimental feature usage
7. **Testing suite** covering experimental scenarios

### Feature Flag Infrastructure

#### Core Feature Flag System

```typescript
// lib/experimental/feature-flags.ts
interface FeatureFlag {
  name: string;
  enabled: boolean;
  rolloutPercentage: number;
  conditions?: {
    userIds?: string[];
    environments?: string[];
    regions?: string[];
    custom?: (context: any) => boolean;
  };
  metadata?: {
    description: string;
    added: string;
    owner: string;
    stableDate?: string;
  };
}

export class ExperimentalFeatureManager {
  private static instance: ExperimentalFeatureManager;
  private flags: Map<string, FeatureFlag> = new Map();
  private context: any = {};

  static getInstance(): ExperimentalFeatureManager {
    if (!ExperimentalFeatureManager.instance) {
      ExperimentalFeatureManager.instance = new ExperimentalFeatureManager();
    }
    return ExperimentalFeatureManager.instance;
  }

  async initialize(context: any = {}) {
    this.context = context;
    await this.loadFeatureFlags();
  }

  private async loadFeatureFlags() {
    // Load from environment variables
    const envFlags = this.loadFromEnvironment();
    
    // Load from external service (optional)
    const remoteFlags = await this.loadFromRemoteService();
    
    // Merge flags with priority: remote > environment > defaults
    const allFlags = { ...this.getDefaultFlags(), ...envFlags, ...remoteFlags };
    
    Object.entries(allFlags).forEach(([name, flag]) => {
      this.flags.set(name, flag as FeatureFlag);
    });
  }

  private getDefaultFlags(): Record<string, FeatureFlag> {
    return {
      'reasoning-models': {
        name: 'reasoning-models',
        enabled: false,
        rolloutPercentage: 0,
        metadata: {
          description: 'Enable O1, O3-mini, and DeepSeek reasoning models',
          added: '2024-12-01',
          owner: 'ai-team',
        },
      },
      'computer-use': {
        name: 'computer-use',
        enabled: false,
        rolloutPercentage: 0,
        conditions: {
          environments: ['development', 'staging'],
        },
        metadata: {
          description: 'Enable Claude 3.5 Sonnet computer use capabilities',
          added: '2024-12-01',
          owner: 'automation-team',
        },
      },
      'generative-ui': {
        name: 'generative-ui',
        enabled: true,
        rolloutPercentage: 100,
        metadata: {
          description: 'Enable streamUI for dynamic component generation',
          added: '2024-11-01',
          owner: 'ui-team',
        },
      },
      'advanced-streaming': {
        name: 'advanced-streaming',
        enabled: true,
        rolloutPercentage: 50,
        metadata: {
          description: 'Advanced streaming patterns with multi-step and waitUntil',
          added: '2024-11-15',
          owner: 'streaming-team',
        },
      },
      'edge-optimization': {
        name: 'edge-optimization',
        enabled: true,
        rolloutPercentage: 75,
        conditions: {
          environments: ['production', 'staging'],
        },
        metadata: {
          description: 'Vercel Edge Runtime optimizations',
          added: '2024-10-01',
          owner: 'performance-team',
        },
      },
      'natural-language-sql': {
        name: 'natural-language-sql',
        enabled: false,
        rolloutPercentage: 25,
        conditions: {
          custom: (context) => context.hasDatabase === true,
        },
        metadata: {
          description: 'Natural language to SQL conversion',
          added: '2024-12-10',
          owner: 'data-team',
        },
      },
    };
  }

  private loadFromEnvironment(): Record<string, Partial<FeatureFlag>> {
    const flags: Record<string, Partial<FeatureFlag>> = {};
    
    // Load from environment variables
    if (process.env.ENABLE_REASONING_MODELS === 'true') {
      flags['reasoning-models'] = { enabled: true, rolloutPercentage: 100 };
    }
    
    if (process.env.ENABLE_COMPUTER_USE === 'true') {
      flags['computer-use'] = { enabled: true, rolloutPercentage: 100 };
    }
    
    if (process.env.ENABLE_GENERATIVE_UI === 'true') {
      flags['generative-ui'] = { enabled: true, rolloutPercentage: 100 };
    }
    
    if (process.env.ENABLE_ADVANCED_STREAMING === 'true') {
      flags['advanced-streaming'] = { enabled: true, rolloutPercentage: 100 };
    }
    
    if (process.env.ENABLE_EDGE_OPTIMIZATION === 'true') {
      flags['edge-optimization'] = { enabled: true, rolloutPercentage: 100 };
    }
    
    return flags;
  }

  private async loadFromRemoteService(): Promise<Record<string, Partial<FeatureFlag>>> {
    // Optional: Load from external feature flag service
    try {
      if (process.env.FEATURE_FLAG_SERVICE_URL) {
        const response = await fetch(process.env.FEATURE_FLAG_SERVICE_URL, {
          headers: {
            'Authorization': `Bearer ${process.env.FEATURE_FLAG_API_KEY}`,
          },
        });
        
        if (response.ok) {
          return await response.json();
        }
      }
    } catch (error) {
      console.warn('Failed to load remote feature flags:', error);
    }
    
    return {};
  }

  isEnabled(flagName: string, userId?: string): boolean {
    const flag = this.flags.get(flagName);
    if (!flag) return false;

    // Check basic enabled status
    if (!flag.enabled) return false;

    // Check conditions
    if (flag.conditions) {
      if (flag.conditions.userIds && userId) {
        if (!flag.conditions.userIds.includes(userId)) return false;
      }
      
      if (flag.conditions.environments) {
        const env = process.env.NODE_ENV || 'development';
        if (!flag.conditions.environments.includes(env)) return false;
      }
      
      if (flag.conditions.regions) {
        const region = process.env.VERCEL_REGION || 'local';
        if (!flag.conditions.regions.includes(region)) return false;
      }
      
      if (flag.conditions.custom) {
        if (!flag.conditions.custom(this.context)) return false;
      }
    }

    // Check rollout percentage
    if (flag.rolloutPercentage < 100) {
      const hash = this.getUserHash(userId || 'anonymous', flagName);
      if (hash % 100 >= flag.rolloutPercentage) return false;
    }

    return true;
  }

  private getUserHash(userId: string, flagName: string): number {
    // Simple hash function for consistent user bucketing
    let hash = 0;
    const str = `${userId}-${flagName}`;
    for (let i = 0; i < str.length; i++) {
      const char = str.charCodeAt(i);
      hash = ((hash << 5) - hash) + char;
      hash = hash & hash; // Convert to 32-bit integer
    }
    return Math.abs(hash);
  }

  getAllFlags(): Map<string, FeatureFlag> {
    return new Map(this.flags);
  }

  updateFlag(flagName: string, updates: Partial<FeatureFlag>) {
    const existing = this.flags.get(flagName);
    if (existing) {
      this.flags.set(flagName, { ...existing, ...updates });
    }
  }

  async trackFeatureUsage(flagName: string, userId?: string, metadata?: any) {
    const usage = {
      flag: flagName,
      userId,
      timestamp: Date.now(),
      context: this.context,
      metadata,
    };

    // Send to analytics service
    await this.sendUsageToAnalytics(usage);
  }

  private async sendUsageToAnalytics(usage: any) {
    try {
      if (process.env.ANALYTICS_ENDPOINT) {
        await fetch(process.env.ANALYTICS_ENDPOINT, {
          method: 'POST',
          headers: { 'Content-Type': 'application/json' },
          body: JSON.stringify(usage),
        });
      }
    } catch (error) {
      console.warn('Failed to send feature usage analytics:', error);
    }
  }
}

// Singleton instance
export const featureFlags = ExperimentalFeatureManager.getInstance();
```

#### Experimental AI SDK Wrapper

```typescript
// lib/experimental/ai-sdk-experimental.ts
import { streamText, generateText, streamUI, generateObject } from 'ai';
import { featureFlags } from './feature-flags';

export interface ExperimentalOptions {
  userId?: string;
  fallbackOnError?: boolean;
  trackUsage?: boolean;
}

export class ExperimentalAISDK {
  
  static async streamText(config: any, options: ExperimentalOptions = {}) {
    const { userId, fallbackOnError = true, trackUsage = true } = options;
    
    // Apply experimental features based on flags
    const experimentalConfig = await this.applyExperimentalFeatures(config, userId);
    
    try {
      const result = streamText(experimentalConfig);
      
      if (trackUsage) {
        await this.trackExperimentalUsage(experimentalConfig, userId);
      }
      
      return result;
    } catch (error) {
      if (fallbackOnError) {
        console.warn('Experimental feature failed, falling back to stable:', error);
        return streamText(config); // Fallback to original config
      }
      throw error;
    }
  }

  static async generateText(config: any, options: ExperimentalOptions = {}) {
    const { userId, fallbackOnError = true, trackUsage = true } = options;
    
    const experimentalConfig = await this.applyExperimentalFeatures(config, userId);
    
    try {
      const result = await generateText(experimentalConfig);
      
      if (trackUsage) {
        await this.trackExperimentalUsage(experimentalConfig, userId);
      }
      
      return result;
    } catch (error) {
      if (fallbackOnError) {
        console.warn('Experimental feature failed, falling back to stable:', error);
        return generateText(config);
      }
      throw error;
    }
  }

  static async streamUI(config: any, options: ExperimentalOptions = {}) {
    const { userId, fallbackOnError = true, trackUsage = true } = options;
    
    if (!featureFlags.isEnabled('generative-ui', userId)) {
      throw new Error('Generative UI is not enabled for this user');
    }
    
    try {
      const result = streamUI(config);
      
      if (trackUsage) {
        await featureFlags.trackFeatureUsage('generative-ui', userId, {
          toolCount: Object.keys(config.tools || {}).length,
        });
      }
      
      return result;
    } catch (error) {
      if (fallbackOnError) {
        // Fallback to regular text streaming
        console.warn('StreamUI failed, falling back to streamText:', error);
        return streamText({
          ...config,
          text: ({ content }) => content, // Simple text output
        });
      }
      throw error;
    }
  }

  private static async applyExperimentalFeatures(config: any, userId?: string) {
    const experimentalConfig = { ...config };

    // Advanced streaming features
    if (featureFlags.isEnabled('advanced-streaming', userId)) {
      experimentalConfig.experimental_streamingTimeouts = {
        streamingTimeout: 45000,
        completeTimeout: 120000,
        keepAliveInterval: 5000,
      };
      
      experimentalConfig.experimental_toolCallStreaming = true;
      experimentalConfig.experimental_continueSteps = true;
      
      await featureFlags.trackFeatureUsage('advanced-streaming', userId);
    }

    // Reasoning models
    if (featureFlags.isEnabled('reasoning-models', userId)) {
      if (config.model?.includes?.('o1') || config.model?.includes?.('reasoner')) {
        experimentalConfig.experimental_reasoning = true;
        experimentalConfig.experimental_thinkingMode = 'visible';
        experimentalConfig.experimental_thinkingTokens = true;
        
        await featureFlags.trackFeatureUsage('reasoning-models', userId);
      }
    }

    // Edge optimizations
    if (featureFlags.isEnabled('edge-optimization', userId)) {
      experimentalConfig.experimental_edgeOptimization = {
        enableCompression: true,
        enableKeepAlive: true,
        connectionPooling: true,
      };
      
      experimentalConfig.experimental_memoryManagement = {
        maxTokensInMemory: 25000,
        enableGarbageCollection: true,
        cleanupInterval: 30000,
      };
      
      await featureFlags.trackFeatureUsage('edge-optimization', userId);
    }

    return experimentalConfig;
  }

  private static async trackExperimentalUsage(config: any, userId?: string) {
    const experimentalFeatures = [];
    
    if (config.experimental_streamingTimeouts) {
      experimentalFeatures.push('advanced-streaming');
    }
    
    if (config.experimental_reasoning) {
      experimentalFeatures.push('reasoning-models');
    }
    
    if (config.experimental_edgeOptimization) {
      experimentalFeatures.push('edge-optimization');
    }

    for (const feature of experimentalFeatures) {
      await featureFlags.trackFeatureUsage(feature, userId, {
        configuration: Object.keys(config).filter(k => k.startsWith('experimental_')),
      });
    }
  }
}
```

### A/B Testing Framework

#### Experiment Configuration

```typescript
// lib/experimental/ab-testing.ts
export interface Experiment {
  id: string;
  name: string;
  description: string;
  status: 'draft' | 'running' | 'paused' | 'completed';
  variants: {
    id: string;
    name: string;
    percentage: number;
    config: any;
  }[];
  targetAudience?: {
    userIds?: string[];
    percentage?: number;
    conditions?: any;
  };
  metrics: string[];
  startDate: Date;
  endDate?: Date;
}

export class ExperimentManager {
  private static instance: ExperimentManager;
  private experiments: Map<string, Experiment> = new Map();

  static getInstance(): ExperimentManager {
    if (!ExperimentManager.instance) {
      ExperimentManager.instance = new ExperimentManager();
    }
    return ExperimentManager.instance;
  }

  async initialize() {
    await this.loadExperiments();
  }

  private async loadExperiments() {
    // Load experiments from configuration
    const defaultExperiments: Experiment[] = [
      {
        id: 'reasoning-vs-standard',
        name: 'Reasoning Models vs Standard Models',
        description: 'Compare performance of O1 reasoning models vs standard models',
        status: 'running',
        variants: [
          { id: 'control', name: 'Standard Model', percentage: 50, config: { useReasoning: false } },
          { id: 'treatment', name: 'Reasoning Model', percentage: 50, config: { useReasoning: true } },
        ],
        targetAudience: { percentage: 10 },
        metrics: ['response_quality', 'latency', 'cost', 'user_satisfaction'],
        startDate: new Date('2024-12-01'),
        endDate: new Date('2024-12-31'),
      },
      {
        id: 'streaming-optimization',
        name: 'Advanced Streaming vs Basic Streaming',
        description: 'Test advanced streaming features vs basic streaming',
        status: 'running',
        variants: [
          { id: 'control', name: 'Basic Streaming', percentage: 70, config: { advancedStreaming: false } },
          { id: 'treatment', name: 'Advanced Streaming', percentage: 30, config: { advancedStreaming: true } },
        ],
        metrics: ['latency', 'error_rate', 'user_engagement'],
        startDate: new Date('2024-11-15'),
        endDate: new Date('2024-12-15'),
      },
    ];

    defaultExperiments.forEach(exp => {
      this.experiments.set(exp.id, exp);
    });
  }

  getVariant(experimentId: string, userId: string): any {
    const experiment = this.experiments.get(experimentId);
    if (!experiment || experiment.status !== 'running') {
      return null;
    }

    // Check if user is in target audience
    if (!this.isUserInAudience(experiment, userId)) {
      return null;
    }

    // Determine variant based on user hash
    const hash = this.getUserHash(userId, experimentId);
    let cumulativePercentage = 0;
    
    for (const variant of experiment.variants) {
      cumulativePercentage += variant.percentage;
      if (hash % 100 < cumulativePercentage) {
        return variant;
      }
    }

    return experiment.variants[0]; // Fallback to first variant
  }

  private isUserInAudience(experiment: Experiment, userId: string): boolean {
    if (!experiment.targetAudience) return true;

    if (experiment.targetAudience.userIds) {
      return experiment.targetAudience.userIds.includes(userId);
    }

    if (experiment.targetAudience.percentage) {
      const hash = this.getUserHash(userId, experiment.id);
      return (hash % 100) < experiment.targetAudience.percentage;
    }

    return true;
  }

  private getUserHash(userId: string, experimentId: string): number {
    let hash = 0;
    const str = `${userId}-${experimentId}`;
    for (let i = 0; i < str.length; i++) {
      const char = str.charCodeAt(i);
      hash = ((hash << 5) - hash) + char;
      hash = hash & hash;
    }
    return Math.abs(hash);
  }

  async recordMetric(experimentId: string, userId: string, metric: string, value: number) {
    const variant = this.getVariant(experimentId, userId);
    if (!variant) return;

    const record = {
      experimentId,
      variantId: variant.id,
      userId,
      metric,
      value,
      timestamp: Date.now(),
    };

    await this.sendMetricToAnalytics(record);
  }

  private async sendMetricToAnalytics(record: any) {
    try {
      if (process.env.EXPERIMENT_ANALYTICS_ENDPOINT) {
        await fetch(process.env.EXPERIMENT_ANALYTICS_ENDPOINT, {
          method: 'POST',
          headers: { 'Content-Type': 'application/json' },
          body: JSON.stringify(record),
        });
      }
    } catch (error) {
      console.warn('Failed to send experiment metric:', error);
    }
  }
}

export const experiments = ExperimentManager.getInstance();
```

### API Integration

#### Experimental API Route

```typescript
// app/api/experimental/chat/route.ts
import { ExperimentalAISDK } from '@/lib/experimental/ai-sdk-experimental';
import { experiments } from '@/lib/experimental/ab-testing';
import { anthropic } from '@ai-sdk/anthropic';

export const runtime = 'edge';
export const maxDuration = 300;

export async function POST(req: Request) {
  const { messages, userId } = await req.json();

  try {
    // Get experiment variant
    const reasoningExperiment = experiments.getVariant('reasoning-vs-standard', userId);
    const streamingExperiment = experiments.getVariant('streaming-optimization', userId);

    // Configure based on experiments
    const config = {
      model: reasoningExperiment?.config.useReasoning 
        ? anthropic('claude-3-sonnet-20240229')  // Would use O1 in real implementation
        : anthropic('claude-3-sonnet-20240229'),
      messages,
    };

    // Use experimental SDK
    const result = await ExperimentalAISDK.streamText(config, {
      userId,
      fallbackOnError: true,
      trackUsage: true,
    });

    // Record experiment metrics
    if (reasoningExperiment) {
      // This would be implemented with actual metrics
      await experiments.recordMetric('reasoning-vs-standard', userId, 'request_count', 1);
    }

    return result.toUIMessageStreamResponse();

  } catch (error) {
    console.error('Experimental chat error:', error);
    
    // Fallback to stable implementation
    const result = await ExperimentalAISDK.streamText({
      model: anthropic('claude-3-sonnet-20240229'),
      messages,
    }, { userId, fallbackOnError: false });

    return result.toUIMessageStreamResponse();
  }
}
```

### Monitoring and Safety

#### Experimental Feature Monitoring

```typescript
// lib/experimental/monitoring.ts
export class ExperimentalMonitoring {
  static async recordFeaturePerformance(
    featureName: string,
    metrics: {
      latency?: number;
      errorRate?: number;
      userSatisfaction?: number;
      cost?: number;
    },
    userId?: string
  ) {
    const record = {
      feature: featureName,
      metrics,
      userId,
      timestamp: Date.now(),
      environment: process.env.NODE_ENV,
      version: process.env.APP_VERSION || 'unknown',
    };

    await this.sendToMonitoring(record);
  }

  static async checkFeatureHealth(featureName: string): Promise<boolean> {
    // Check if feature is performing within acceptable parameters
    const healthData = await this.getFeatureHealthData(featureName);
    
    return (
      healthData.errorRate < 0.05 && // Less than 5% error rate
      healthData.latency < 5000 && // Less than 5 second latency
      healthData.userSatisfaction > 0.7 // Above 70% satisfaction
    );
  }

  private static async sendToMonitoring(record: any) {
    // Send to monitoring service
    console.log('Experimental Feature Metrics:', record);
  }

  private static async getFeatureHealthData(featureName: string) {
    // This would fetch real health data from monitoring service
    return {
      errorRate: Math.random() * 0.1,
      latency: Math.random() * 3000,
      userSatisfaction: 0.7 + (Math.random() * 0.3),
    };
  }
}
```

### Usage and Safety Guidelines

- **Feature flags**: Control experimental features with environment variables and remote configuration
- **A/B testing**: Run controlled experiments to validate new features
- **Fallback mechanisms**: Always provide stable alternatives for experimental features
- **Monitoring**: Track performance and user experience of experimental features
- **Gradual rollout**: Start with small percentages and increase based on performance
- **Safety checks**: Implement automatic feature disabling for poor performance
- **Documentation**: Document experimental features and their expected behavior

Focus on building a robust experimental framework that enables safe innovation while protecting user experience and system stability.