summaryrefslogtreecommitdiff
path: root/tooling/vercel-ai-sdk/.claude/commands/ai-experimental-setup.md
diff options
context:
space:
mode:
Diffstat (limited to 'tooling/vercel-ai-sdk/.claude/commands/ai-experimental-setup.md')
-rw-r--r--tooling/vercel-ai-sdk/.claude/commands/ai-experimental-setup.md793
1 files changed, 793 insertions, 0 deletions
diff --git a/tooling/vercel-ai-sdk/.claude/commands/ai-experimental-setup.md b/tooling/vercel-ai-sdk/.claude/commands/ai-experimental-setup.md
new file mode 100644
index 0000000..80d83ff
--- /dev/null
+++ b/tooling/vercel-ai-sdk/.claude/commands/ai-experimental-setup.md
@@ -0,0 +1,793 @@
+---
+allowed-tools: Read, Write, Edit, MultiEdit, Bash
+description: Enable cutting-edge experimental AI SDK features safely
+argument-hint: "[beta|experimental|research|custom]"
+---
+
+## Enable Experimental AI SDK Features
+
+Configure and safely enable cutting-edge AI SDK experimental features: $ARGUMENTS
+
+### Current Experimental Status
+
+Existing experimental features: !`grep -r "experimental\|beta\|alpha" . --include="*.ts" --include="*.json" | head -5`
+
+Feature flags: !`grep -r "ENABLE_\|FLAG_" .env* 2>/dev/null | head -3 || echo "No feature flags found"`
+
+Advanced configurations: !`grep -r "streamingTimeouts\|thinkingMode\|toolCallStreaming" . --include="*.ts" | head -5`
+
+### Experimental Feature Categories
+
+**Beta Features**: Stable experimental features ready for production testing
+**Experimental**: Cutting-edge features in active development
+**Research**: Bleeding-edge research features for experimentation
+**Custom**: Custom experimental implementations and modifications
+
+### Your Task
+
+1. **Analyze experimental feature landscape** and identify safe options
+2. **Implement feature flag system** for controlled rollouts
+3. **Configure experimental AI SDK options** with proper safeguards
+4. **Set up A/B testing framework** for feature validation
+5. **Add monitoring and telemetry** for experimental features
+6. **Create fallback mechanisms** for experimental feature failures
+7. **Implement gradual rollout strategy** with user controls
+8. **Add comprehensive testing** for experimental features
+
+### Implementation Requirements
+
+#### Feature Flag System
+
+- Environment-based feature control
+- User-level feature toggles
+- Percentage-based rollouts
+- Real-time feature flag updates
+- Fallback mechanisms for failures
+
+#### Safety Measures
+
+- Automatic fallback to stable features
+- Error isolation and reporting
+- Performance impact monitoring
+- User experience protection
+- Data integrity guarantees
+
+#### Experimental Configuration
+
+- Advanced streaming options
+- Cutting-edge model features
+- Research-level AI capabilities
+- Custom provider integrations
+- Performance optimizations
+
+### Expected Deliverables
+
+1. **Feature flag system** with environment and user controls
+2. **Experimental AI SDK configurations** with safety controls
+3. **A/B testing framework** for feature validation
+4. **Monitoring and telemetry** for experimental features
+5. **Fallback mechanisms** for reliability
+6. **Documentation** for experimental feature usage
+7. **Testing suite** covering experimental scenarios
+
+### Feature Flag Infrastructure
+
+#### Core Feature Flag System
+
+```typescript
+// lib/experimental/feature-flags.ts
+interface FeatureFlag {
+ name: string;
+ enabled: boolean;
+ rolloutPercentage: number;
+ conditions?: {
+ userIds?: string[];
+ environments?: string[];
+ regions?: string[];
+ custom?: (context: any) => boolean;
+ };
+ metadata?: {
+ description: string;
+ added: string;
+ owner: string;
+ stableDate?: string;
+ };
+}
+
+export class ExperimentalFeatureManager {
+ private static instance: ExperimentalFeatureManager;
+ private flags: Map<string, FeatureFlag> = new Map();
+ private context: any = {};
+
+ static getInstance(): ExperimentalFeatureManager {
+ if (!ExperimentalFeatureManager.instance) {
+ ExperimentalFeatureManager.instance = new ExperimentalFeatureManager();
+ }
+ return ExperimentalFeatureManager.instance;
+ }
+
+ async initialize(context: any = {}) {
+ this.context = context;
+ await this.loadFeatureFlags();
+ }
+
+ private async loadFeatureFlags() {
+ // Load from environment variables
+ const envFlags = this.loadFromEnvironment();
+
+ // Load from external service (optional)
+ const remoteFlags = await this.loadFromRemoteService();
+
+ // Merge flags with priority: remote > environment > defaults
+ const allFlags = { ...this.getDefaultFlags(), ...envFlags, ...remoteFlags };
+
+ Object.entries(allFlags).forEach(([name, flag]) => {
+ this.flags.set(name, flag as FeatureFlag);
+ });
+ }
+
+ private getDefaultFlags(): Record<string, FeatureFlag> {
+ return {
+ 'reasoning-models': {
+ name: 'reasoning-models',
+ enabled: false,
+ rolloutPercentage: 0,
+ metadata: {
+ description: 'Enable O1, O3-mini, and DeepSeek reasoning models',
+ added: '2024-12-01',
+ owner: 'ai-team',
+ },
+ },
+ 'computer-use': {
+ name: 'computer-use',
+ enabled: false,
+ rolloutPercentage: 0,
+ conditions: {
+ environments: ['development', 'staging'],
+ },
+ metadata: {
+ description: 'Enable Claude 3.5 Sonnet computer use capabilities',
+ added: '2024-12-01',
+ owner: 'automation-team',
+ },
+ },
+ 'generative-ui': {
+ name: 'generative-ui',
+ enabled: true,
+ rolloutPercentage: 100,
+ metadata: {
+ description: 'Enable streamUI for dynamic component generation',
+ added: '2024-11-01',
+ owner: 'ui-team',
+ },
+ },
+ 'advanced-streaming': {
+ name: 'advanced-streaming',
+ enabled: true,
+ rolloutPercentage: 50,
+ metadata: {
+ description: 'Advanced streaming patterns with multi-step and waitUntil',
+ added: '2024-11-15',
+ owner: 'streaming-team',
+ },
+ },
+ 'edge-optimization': {
+ name: 'edge-optimization',
+ enabled: true,
+ rolloutPercentage: 75,
+ conditions: {
+ environments: ['production', 'staging'],
+ },
+ metadata: {
+ description: 'Vercel Edge Runtime optimizations',
+ added: '2024-10-01',
+ owner: 'performance-team',
+ },
+ },
+ 'natural-language-sql': {
+ name: 'natural-language-sql',
+ enabled: false,
+ rolloutPercentage: 25,
+ conditions: {
+ custom: (context) => context.hasDatabase === true,
+ },
+ metadata: {
+ description: 'Natural language to SQL conversion',
+ added: '2024-12-10',
+ owner: 'data-team',
+ },
+ },
+ };
+ }
+
+ private loadFromEnvironment(): Record<string, Partial<FeatureFlag>> {
+ const flags: Record<string, Partial<FeatureFlag>> = {};
+
+ // Load from environment variables
+ if (process.env.ENABLE_REASONING_MODELS === 'true') {
+ flags['reasoning-models'] = { enabled: true, rolloutPercentage: 100 };
+ }
+
+ if (process.env.ENABLE_COMPUTER_USE === 'true') {
+ flags['computer-use'] = { enabled: true, rolloutPercentage: 100 };
+ }
+
+ if (process.env.ENABLE_GENERATIVE_UI === 'true') {
+ flags['generative-ui'] = { enabled: true, rolloutPercentage: 100 };
+ }
+
+ if (process.env.ENABLE_ADVANCED_STREAMING === 'true') {
+ flags['advanced-streaming'] = { enabled: true, rolloutPercentage: 100 };
+ }
+
+ if (process.env.ENABLE_EDGE_OPTIMIZATION === 'true') {
+ flags['edge-optimization'] = { enabled: true, rolloutPercentage: 100 };
+ }
+
+ return flags;
+ }
+
+ private async loadFromRemoteService(): Promise<Record<string, Partial<FeatureFlag>>> {
+ // Optional: Load from external feature flag service
+ try {
+ if (process.env.FEATURE_FLAG_SERVICE_URL) {
+ const response = await fetch(process.env.FEATURE_FLAG_SERVICE_URL, {
+ headers: {
+ 'Authorization': `Bearer ${process.env.FEATURE_FLAG_API_KEY}`,
+ },
+ });
+
+ if (response.ok) {
+ return await response.json();
+ }
+ }
+ } catch (error) {
+ console.warn('Failed to load remote feature flags:', error);
+ }
+
+ return {};
+ }
+
+ isEnabled(flagName: string, userId?: string): boolean {
+ const flag = this.flags.get(flagName);
+ if (!flag) return false;
+
+ // Check basic enabled status
+ if (!flag.enabled) return false;
+
+ // Check conditions
+ if (flag.conditions) {
+ if (flag.conditions.userIds && userId) {
+ if (!flag.conditions.userIds.includes(userId)) return false;
+ }
+
+ if (flag.conditions.environments) {
+ const env = process.env.NODE_ENV || 'development';
+ if (!flag.conditions.environments.includes(env)) return false;
+ }
+
+ if (flag.conditions.regions) {
+ const region = process.env.VERCEL_REGION || 'local';
+ if (!flag.conditions.regions.includes(region)) return false;
+ }
+
+ if (flag.conditions.custom) {
+ if (!flag.conditions.custom(this.context)) return false;
+ }
+ }
+
+ // Check rollout percentage
+ if (flag.rolloutPercentage < 100) {
+ const hash = this.getUserHash(userId || 'anonymous', flagName);
+ if (hash % 100 >= flag.rolloutPercentage) return false;
+ }
+
+ return true;
+ }
+
+ private getUserHash(userId: string, flagName: string): number {
+ // Simple hash function for consistent user bucketing
+ let hash = 0;
+ const str = `${userId}-${flagName}`;
+ for (let i = 0; i < str.length; i++) {
+ const char = str.charCodeAt(i);
+ hash = ((hash << 5) - hash) + char;
+ hash = hash & hash; // Convert to 32-bit integer
+ }
+ return Math.abs(hash);
+ }
+
+ getAllFlags(): Map<string, FeatureFlag> {
+ return new Map(this.flags);
+ }
+
+ updateFlag(flagName: string, updates: Partial<FeatureFlag>) {
+ const existing = this.flags.get(flagName);
+ if (existing) {
+ this.flags.set(flagName, { ...existing, ...updates });
+ }
+ }
+
+ async trackFeatureUsage(flagName: string, userId?: string, metadata?: any) {
+ const usage = {
+ flag: flagName,
+ userId,
+ timestamp: Date.now(),
+ context: this.context,
+ metadata,
+ };
+
+ // Send to analytics service
+ await this.sendUsageToAnalytics(usage);
+ }
+
+ private async sendUsageToAnalytics(usage: any) {
+ try {
+ if (process.env.ANALYTICS_ENDPOINT) {
+ await fetch(process.env.ANALYTICS_ENDPOINT, {
+ method: 'POST',
+ headers: { 'Content-Type': 'application/json' },
+ body: JSON.stringify(usage),
+ });
+ }
+ } catch (error) {
+ console.warn('Failed to send feature usage analytics:', error);
+ }
+ }
+}
+
+// Singleton instance
+export const featureFlags = ExperimentalFeatureManager.getInstance();
+```
+
+#### Experimental AI SDK Wrapper
+
+```typescript
+// lib/experimental/ai-sdk-experimental.ts
+import { streamText, generateText, streamUI, generateObject } from 'ai';
+import { featureFlags } from './feature-flags';
+
+export interface ExperimentalOptions {
+ userId?: string;
+ fallbackOnError?: boolean;
+ trackUsage?: boolean;
+}
+
+export class ExperimentalAISDK {
+
+ static async streamText(config: any, options: ExperimentalOptions = {}) {
+ const { userId, fallbackOnError = true, trackUsage = true } = options;
+
+ // Apply experimental features based on flags
+ const experimentalConfig = await this.applyExperimentalFeatures(config, userId);
+
+ try {
+ const result = streamText(experimentalConfig);
+
+ if (trackUsage) {
+ await this.trackExperimentalUsage(experimentalConfig, userId);
+ }
+
+ return result;
+ } catch (error) {
+ if (fallbackOnError) {
+ console.warn('Experimental feature failed, falling back to stable:', error);
+ return streamText(config); // Fallback to original config
+ }
+ throw error;
+ }
+ }
+
+ static async generateText(config: any, options: ExperimentalOptions = {}) {
+ const { userId, fallbackOnError = true, trackUsage = true } = options;
+
+ const experimentalConfig = await this.applyExperimentalFeatures(config, userId);
+
+ try {
+ const result = await generateText(experimentalConfig);
+
+ if (trackUsage) {
+ await this.trackExperimentalUsage(experimentalConfig, userId);
+ }
+
+ return result;
+ } catch (error) {
+ if (fallbackOnError) {
+ console.warn('Experimental feature failed, falling back to stable:', error);
+ return generateText(config);
+ }
+ throw error;
+ }
+ }
+
+ static async streamUI(config: any, options: ExperimentalOptions = {}) {
+ const { userId, fallbackOnError = true, trackUsage = true } = options;
+
+ if (!featureFlags.isEnabled('generative-ui', userId)) {
+ throw new Error('Generative UI is not enabled for this user');
+ }
+
+ try {
+ const result = streamUI(config);
+
+ if (trackUsage) {
+ await featureFlags.trackFeatureUsage('generative-ui', userId, {
+ toolCount: Object.keys(config.tools || {}).length,
+ });
+ }
+
+ return result;
+ } catch (error) {
+ if (fallbackOnError) {
+ // Fallback to regular text streaming
+ console.warn('StreamUI failed, falling back to streamText:', error);
+ return streamText({
+ ...config,
+ text: ({ content }) => content, // Simple text output
+ });
+ }
+ throw error;
+ }
+ }
+
+ private static async applyExperimentalFeatures(config: any, userId?: string) {
+ const experimentalConfig = { ...config };
+
+ // Advanced streaming features
+ if (featureFlags.isEnabled('advanced-streaming', userId)) {
+ experimentalConfig.experimental_streamingTimeouts = {
+ streamingTimeout: 45000,
+ completeTimeout: 120000,
+ keepAliveInterval: 5000,
+ };
+
+ experimentalConfig.experimental_toolCallStreaming = true;
+ experimentalConfig.experimental_continueSteps = true;
+
+ await featureFlags.trackFeatureUsage('advanced-streaming', userId);
+ }
+
+ // Reasoning models
+ if (featureFlags.isEnabled('reasoning-models', userId)) {
+ if (config.model?.includes?.('o1') || config.model?.includes?.('reasoner')) {
+ experimentalConfig.experimental_reasoning = true;
+ experimentalConfig.experimental_thinkingMode = 'visible';
+ experimentalConfig.experimental_thinkingTokens = true;
+
+ await featureFlags.trackFeatureUsage('reasoning-models', userId);
+ }
+ }
+
+ // Edge optimizations
+ if (featureFlags.isEnabled('edge-optimization', userId)) {
+ experimentalConfig.experimental_edgeOptimization = {
+ enableCompression: true,
+ enableKeepAlive: true,
+ connectionPooling: true,
+ };
+
+ experimentalConfig.experimental_memoryManagement = {
+ maxTokensInMemory: 25000,
+ enableGarbageCollection: true,
+ cleanupInterval: 30000,
+ };
+
+ await featureFlags.trackFeatureUsage('edge-optimization', userId);
+ }
+
+ return experimentalConfig;
+ }
+
+ private static async trackExperimentalUsage(config: any, userId?: string) {
+ const experimentalFeatures = [];
+
+ if (config.experimental_streamingTimeouts) {
+ experimentalFeatures.push('advanced-streaming');
+ }
+
+ if (config.experimental_reasoning) {
+ experimentalFeatures.push('reasoning-models');
+ }
+
+ if (config.experimental_edgeOptimization) {
+ experimentalFeatures.push('edge-optimization');
+ }
+
+ for (const feature of experimentalFeatures) {
+ await featureFlags.trackFeatureUsage(feature, userId, {
+ configuration: Object.keys(config).filter(k => k.startsWith('experimental_')),
+ });
+ }
+ }
+}
+```
+
+### A/B Testing Framework
+
+#### Experiment Configuration
+
+```typescript
+// lib/experimental/ab-testing.ts
+export interface Experiment {
+ id: string;
+ name: string;
+ description: string;
+ status: 'draft' | 'running' | 'paused' | 'completed';
+ variants: {
+ id: string;
+ name: string;
+ percentage: number;
+ config: any;
+ }[];
+ targetAudience?: {
+ userIds?: string[];
+ percentage?: number;
+ conditions?: any;
+ };
+ metrics: string[];
+ startDate: Date;
+ endDate?: Date;
+}
+
+export class ExperimentManager {
+ private static instance: ExperimentManager;
+ private experiments: Map<string, Experiment> = new Map();
+
+ static getInstance(): ExperimentManager {
+ if (!ExperimentManager.instance) {
+ ExperimentManager.instance = new ExperimentManager();
+ }
+ return ExperimentManager.instance;
+ }
+
+ async initialize() {
+ await this.loadExperiments();
+ }
+
+ private async loadExperiments() {
+ // Load experiments from configuration
+ const defaultExperiments: Experiment[] = [
+ {
+ id: 'reasoning-vs-standard',
+ name: 'Reasoning Models vs Standard Models',
+ description: 'Compare performance of O1 reasoning models vs standard models',
+ status: 'running',
+ variants: [
+ { id: 'control', name: 'Standard Model', percentage: 50, config: { useReasoning: false } },
+ { id: 'treatment', name: 'Reasoning Model', percentage: 50, config: { useReasoning: true } },
+ ],
+ targetAudience: { percentage: 10 },
+ metrics: ['response_quality', 'latency', 'cost', 'user_satisfaction'],
+ startDate: new Date('2024-12-01'),
+ endDate: new Date('2024-12-31'),
+ },
+ {
+ id: 'streaming-optimization',
+ name: 'Advanced Streaming vs Basic Streaming',
+ description: 'Test advanced streaming features vs basic streaming',
+ status: 'running',
+ variants: [
+ { id: 'control', name: 'Basic Streaming', percentage: 70, config: { advancedStreaming: false } },
+ { id: 'treatment', name: 'Advanced Streaming', percentage: 30, config: { advancedStreaming: true } },
+ ],
+ metrics: ['latency', 'error_rate', 'user_engagement'],
+ startDate: new Date('2024-11-15'),
+ endDate: new Date('2024-12-15'),
+ },
+ ];
+
+ defaultExperiments.forEach(exp => {
+ this.experiments.set(exp.id, exp);
+ });
+ }
+
+ getVariant(experimentId: string, userId: string): any {
+ const experiment = this.experiments.get(experimentId);
+ if (!experiment || experiment.status !== 'running') {
+ return null;
+ }
+
+ // Check if user is in target audience
+ if (!this.isUserInAudience(experiment, userId)) {
+ return null;
+ }
+
+ // Determine variant based on user hash
+ const hash = this.getUserHash(userId, experimentId);
+ let cumulativePercentage = 0;
+
+ for (const variant of experiment.variants) {
+ cumulativePercentage += variant.percentage;
+ if (hash % 100 < cumulativePercentage) {
+ return variant;
+ }
+ }
+
+ return experiment.variants[0]; // Fallback to first variant
+ }
+
+ private isUserInAudience(experiment: Experiment, userId: string): boolean {
+ if (!experiment.targetAudience) return true;
+
+ if (experiment.targetAudience.userIds) {
+ return experiment.targetAudience.userIds.includes(userId);
+ }
+
+ if (experiment.targetAudience.percentage) {
+ const hash = this.getUserHash(userId, experiment.id);
+ return (hash % 100) < experiment.targetAudience.percentage;
+ }
+
+ return true;
+ }
+
+ private getUserHash(userId: string, experimentId: string): number {
+ let hash = 0;
+ const str = `${userId}-${experimentId}`;
+ for (let i = 0; i < str.length; i++) {
+ const char = str.charCodeAt(i);
+ hash = ((hash << 5) - hash) + char;
+ hash = hash & hash;
+ }
+ return Math.abs(hash);
+ }
+
+ async recordMetric(experimentId: string, userId: string, metric: string, value: number) {
+ const variant = this.getVariant(experimentId, userId);
+ if (!variant) return;
+
+ const record = {
+ experimentId,
+ variantId: variant.id,
+ userId,
+ metric,
+ value,
+ timestamp: Date.now(),
+ };
+
+ await this.sendMetricToAnalytics(record);
+ }
+
+ private async sendMetricToAnalytics(record: any) {
+ try {
+ if (process.env.EXPERIMENT_ANALYTICS_ENDPOINT) {
+ await fetch(process.env.EXPERIMENT_ANALYTICS_ENDPOINT, {
+ method: 'POST',
+ headers: { 'Content-Type': 'application/json' },
+ body: JSON.stringify(record),
+ });
+ }
+ } catch (error) {
+ console.warn('Failed to send experiment metric:', error);
+ }
+ }
+}
+
+export const experiments = ExperimentManager.getInstance();
+```
+
+### API Integration
+
+#### Experimental API Route
+
+```typescript
+// app/api/experimental/chat/route.ts
+import { ExperimentalAISDK } from '@/lib/experimental/ai-sdk-experimental';
+import { experiments } from '@/lib/experimental/ab-testing';
+import { anthropic } from '@ai-sdk/anthropic';
+
+export const runtime = 'edge';
+export const maxDuration = 300;
+
+export async function POST(req: Request) {
+ const { messages, userId } = await req.json();
+
+ try {
+ // Get experiment variant
+ const reasoningExperiment = experiments.getVariant('reasoning-vs-standard', userId);
+ const streamingExperiment = experiments.getVariant('streaming-optimization', userId);
+
+ // Configure based on experiments
+ const config = {
+ model: reasoningExperiment?.config.useReasoning
+ ? anthropic('claude-3-sonnet-20240229') // Would use O1 in real implementation
+ : anthropic('claude-3-sonnet-20240229'),
+ messages,
+ };
+
+ // Use experimental SDK
+ const result = await ExperimentalAISDK.streamText(config, {
+ userId,
+ fallbackOnError: true,
+ trackUsage: true,
+ });
+
+ // Record experiment metrics
+ if (reasoningExperiment) {
+ // This would be implemented with actual metrics
+ await experiments.recordMetric('reasoning-vs-standard', userId, 'request_count', 1);
+ }
+
+ return result.toUIMessageStreamResponse();
+
+ } catch (error) {
+ console.error('Experimental chat error:', error);
+
+ // Fallback to stable implementation
+ const result = await ExperimentalAISDK.streamText({
+ model: anthropic('claude-3-sonnet-20240229'),
+ messages,
+ }, { userId, fallbackOnError: false });
+
+ return result.toUIMessageStreamResponse();
+ }
+}
+```
+
+### Monitoring and Safety
+
+#### Experimental Feature Monitoring
+
+```typescript
+// lib/experimental/monitoring.ts
+export class ExperimentalMonitoring {
+ static async recordFeaturePerformance(
+ featureName: string,
+ metrics: {
+ latency?: number;
+ errorRate?: number;
+ userSatisfaction?: number;
+ cost?: number;
+ },
+ userId?: string
+ ) {
+ const record = {
+ feature: featureName,
+ metrics,
+ userId,
+ timestamp: Date.now(),
+ environment: process.env.NODE_ENV,
+ version: process.env.APP_VERSION || 'unknown',
+ };
+
+ await this.sendToMonitoring(record);
+ }
+
+ static async checkFeatureHealth(featureName: string): Promise<boolean> {
+ // Check if feature is performing within acceptable parameters
+ const healthData = await this.getFeatureHealthData(featureName);
+
+ return (
+ healthData.errorRate < 0.05 && // Less than 5% error rate
+ healthData.latency < 5000 && // Less than 5 second latency
+ healthData.userSatisfaction > 0.7 // Above 70% satisfaction
+ );
+ }
+
+ private static async sendToMonitoring(record: any) {
+ // Send to monitoring service
+ console.log('Experimental Feature Metrics:', record);
+ }
+
+ private static async getFeatureHealthData(featureName: string) {
+ // This would fetch real health data from monitoring service
+ return {
+ errorRate: Math.random() * 0.1,
+ latency: Math.random() * 3000,
+ userSatisfaction: 0.7 + (Math.random() * 0.3),
+ };
+ }
+}
+```
+
+### Usage and Safety Guidelines
+
+- **Feature flags**: Control experimental features with environment variables and remote configuration
+- **A/B testing**: Run controlled experiments to validate new features
+- **Fallback mechanisms**: Always provide stable alternatives for experimental features
+- **Monitoring**: Track performance and user experience of experimental features
+- **Gradual rollout**: Start with small percentages and increase based on performance
+- **Safety checks**: Implement automatic feature disabling for poor performance
+- **Documentation**: Document experimental features and their expected behavior
+
+Focus on building a robust experimental framework that enables safe innovation while protecting user experience and system stability. \ No newline at end of file