summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorTheSiahxyz <164138827+TheSiahxyz@users.noreply.github.com>2024-12-29 16:24:13 +0900
committerTheSiahxyz <164138827+TheSiahxyz@users.noreply.github.com>2024-12-29 16:24:13 +0900
commitc0c077f35346a17e9634178e0bb9850319198045 (patch)
treedda9d913cf5e9a5b85f478d37e44b7d0af8471fb
parent7aa8eb1a505d6f206286245fe519b11d96d43903 (diff)
updates
-rw-r--r--SI/.obsidian/app.json3
-rw-r--r--SI/.obsidian/plugins/recent-files-obsidian/data.json12
-rw-r--r--SI/.obsidian/workspace.json13
-rw-r--r--SI/Dashboard.md11
-rw-r--r--SI/Notes/1735275859-resource.md8
-rw-r--r--SI/Resource/Data Science/Machine Learning/Contents/Bias and Variance.md6
-rw-r--r--SI/Resource/Data Science/Machine Learning/Machine Learning.md24
7 files changed, 32 insertions, 45 deletions
diff --git a/SI/.obsidian/app.json b/SI/.obsidian/app.json
index 9fc5682..eaddc23 100644
--- a/SI/.obsidian/app.json
+++ b/SI/.obsidian/app.json
@@ -21,5 +21,6 @@
"propertiesInDocument": "source",
"spellcheck": true,
"autoPairMarkdown": false,
- "strictLineBreaks": false
+ "strictLineBreaks": false,
+ "useMarkdownLinks": true
} \ No newline at end of file
diff --git a/SI/.obsidian/plugins/recent-files-obsidian/data.json b/SI/.obsidian/plugins/recent-files-obsidian/data.json
index 8627ee1..ca80f7c 100644
--- a/SI/.obsidian/plugins/recent-files-obsidian/data.json
+++ b/SI/.obsidian/plugins/recent-files-obsidian/data.json
@@ -1,14 +1,18 @@
{
"recentFiles": [
{
- "basename": "Dashboard",
- "path": "Dashboard.md"
+ "basename": "Bias and Variance",
+ "path": "Resource/Data Science/Machine Learning/Contents/Bias and Variance.md"
},
{
"basename": "Machine Learning",
"path": "Resource/Data Science/Machine Learning/Machine Learning.md"
},
{
+ "basename": "Dashboard",
+ "path": "Dashboard.md"
+ },
+ {
"basename": "Gradient descent",
"path": "Resource/Data Science/Machine Learning/Contents/Gradient descent.md"
},
@@ -17,10 +21,6 @@
"path": "Resource/Data Science/Machine Learning/Contents/Classification.md"
},
{
- "basename": "Bias and Variance",
- "path": "Resource/Data Science/Machine Learning/Contents/Bias and Variance.md"
- },
- {
"basename": "SAA",
"path": "Resource/AWS/SAA.md"
},
diff --git a/SI/.obsidian/workspace.json b/SI/.obsidian/workspace.json
index 64b655c..6bbcaab 100644
--- a/SI/.obsidian/workspace.json
+++ b/SI/.obsidian/workspace.json
@@ -13,13 +13,13 @@
"state": {
"type": "markdown",
"state": {
- "file": "Dashboard.md",
+ "file": "Resource/Data Science/Machine Learning/Contents/Bias and Variance.md",
"mode": "source",
"backlinks": false,
"source": true
},
"icon": "lucide-file",
- "title": "Dashboard"
+ "title": "Bias and Variance"
}
}
]
@@ -77,8 +77,7 @@
"title": "Recent Files"
}
}
- ],
- "currentTab": 1
+ ]
}
],
"direction": "horizontal",
@@ -195,14 +194,14 @@
"periodic-notes:Open today": false
}
},
- "active": "b1f7f5ee0151b994",
+ "active": "3d54370a0282bec3",
"lastOpenFiles": [
+ "Resource/Data Science/Machine Learning/Machine Learning.md",
+ "Dashboard.md",
"Resource/Data Science/Machine Learning/Contents/Gradient descent.md",
"Resource/Data Science/Machine Learning/Contents/Classification.md",
"Resource/Data Science/Machine Learning/Contents/Bias and Variance.md",
"Resource/AWS/SAA.md",
- "Dashboard.md",
- "Resource/Data Science/Machine Learning/Machine Learning.md",
"Resource/AWS",
"Resource/Data Science/SQL/MySQL/MySQL.md",
"Spaces/Home/Archive/Data_Science",
diff --git a/SI/Dashboard.md b/SI/Dashboard.md
index ea9865e..dcb8a56 100644
--- a/SI/Dashboard.md
+++ b/SI/Dashboard.md
@@ -9,32 +9,27 @@ cssclasses:
- dashboard
- dashboard-ReadLineLength
---
-
# Dashboard
- ### 🏠 [House]()
-
- 💰 Budget
- [[Q1 2024]]
- #### 🛒 Grocery
- 💳 Transaction
-
- ### 👤 [Personal]()
-
- #### 🏡[Archive](file:////Users/si/Documents/SI/Archive)
- #### ✍️ [Area](file:////Users/si/Documents/SI/Area)
- #### 📁 [Projects](file:////Users/si/Documents/SI/Project)
- #### 📚 [Resource](file:////Users/si/Documents/SI/Resource)
- ✅ [To-do](file:////Users/si/Documents/SI/To-do)
- `$=dv.list(dv.pages('"To-do"').sort(f=>f.file.name,"desc").limit(4).file.link)`
+ `$=dv.list(dv.pages('"To-do"').sort(f=>f.file.name,"desc").limit(4).file.link)`
- ### 🏢 [School]()
-
- 📔 [Class]()
- `$=dv.list(dv.pages('"Resource"').sort(f=>f.file.mtime.ts,"desc").limit(4).file.link)`
+ `$=dv.list(dv.pages('"Resource"').sort(f=>f.file.mtime.ts,"desc").limit(4).file.link)`
- 💼 [Project]()
- ✏️ [Assignment]()
- `$=dv.list(dv.pages('#assignment').sort(f=>f.file.mtime.ts,"desc").file.link)`
+ `$=dv.list(dv.pages('#assignment').sort(f=>f.file.mtime.ts,"desc").file.link)`
- ### 🚧 Life Progress
diff --git a/SI/Notes/1735275859-resource.md b/SI/Notes/1735275859-resource.md
deleted file mode 100644
index 0638325..0000000
--- a/SI/Notes/1735275859-resource.md
+++ /dev/null
@@ -1,8 +0,0 @@
----
-id: 1735275859-resource
-aliases:
- - Resource
-tags: []
----
-
-# Resource
diff --git a/SI/Resource/Data Science/Machine Learning/Contents/Bias and Variance.md b/SI/Resource/Data Science/Machine Learning/Contents/Bias and Variance.md
index 294f138..a3e6398 100644
--- a/SI/Resource/Data Science/Machine Learning/Contents/Bias and Variance.md
+++ b/SI/Resource/Data Science/Machine Learning/Contents/Bias and Variance.md
@@ -34,9 +34,9 @@ tags:
- Solution
- Use validation data set
- - $\bbox[teal,5px,border:2px solid red]{\text{Train data (80\%)+ Valid data (10\%) + Test data (10\%)}}$
- - Cannot directly participate in model training
- - Continuously evaluates in the learning base, and stores the best existing performance
+ - $\bbox[teal,5px,border:2px solid red]{\text{Train data (80\%)+ Valid data (10\%) + Test data (10\%)}}$
+ - Cannot directly participate in model training
+ - Continuously evaluates in the learning base, and stores the best existing performance
- K-fold cross validation
- **Leave-One-Out Cross-Validation (LOOCV)**
- a special case of k-fold cross-validation where **K** is equal to the number of data points in the dataset.
diff --git a/SI/Resource/Data Science/Machine Learning/Machine Learning.md b/SI/Resource/Data Science/Machine Learning/Machine Learning.md
index 6dbb5e8..3ee6924 100644
--- a/SI/Resource/Data Science/Machine Learning/Machine Learning.md
+++ b/SI/Resource/Data Science/Machine Learning/Machine Learning.md
@@ -32,7 +32,7 @@ Learning is to find the best model represented data, meaning optimization of par
- A model with the smallest difference between predictions $\hat{y}$ and actual values $y$
- A model parameter makes the smallest loss
-## Types of learning
+## Types of Learning
### Supervised Learning
@@ -46,9 +46,9 @@ Learning is to find the best model represented data, meaning optimization of par
- [[Support Vector Machine]] ([[Support Vector Machine |SVM]])
- [[Decision Tree]]
- [[Linear Discriminant Analysis]] ([[Linear Discriminant Analysis |LDA]])
- 1. [[Ensemble]]
- - [[Bagging]]
- - [[Boosting]]
+ 1. [[Ensemble]]
+ - [[Bagging]]
+ - [[Boosting]]
### Unsupervised Learning
@@ -65,11 +65,11 @@ Learning is to find the best model represented data, meaning optimization of par
- Data Properties
- Features (= attributes, independent variables): X
- - characteristics of data or items
- - N: # of data sample
- - D: # of features
+ - characteristics of data or items
+ - N: # of data sample
+ - D: # of features
- Label (dependent variables): y
- - if there is a label, it is supervised. Otherwise, it is unsupervised
+ - if there is a label, it is supervised. Otherwise, it is unsupervised
- Parameter (=weight): learnable parameters that a model have, not given data
- [[Hyperparameter]]: parameters that human has to decide
- Input vs. Output
@@ -77,11 +77,11 @@ Learning is to find the best model represented data, meaning optimization of par
- Output ($\hat{y}$): values of prediction derived from model
- Linear vs. Nonlinear
- Linear regression: a model can be implemented by a linear function
- - Simple Linear Regression: Involves two variables — one independent variable and one dependent variable. The relationship between these variables is modeled as a straight line.
- - Multiple Linear Regression: Uses more than one independent variable to predict a dependent variable. The relationship is still linear in nature, meaning it assumes a straight-line relationship between each independent variable and the dependent variable.
- - ex) $y = w_0 + w_1*x_1 + w_2*x_2 + \dots + w_D*x_D, y = w_0 + w_1*x_1 + w_2*x^2$
+ - Simple Linear Regression: Involves two variables — one independent variable and one dependent variable. The relationship between these variables is modeled as a straight line.
+ - Multiple Linear Regression: Uses more than one independent variable to predict a dependent variable. The relationship is still linear in nature, meaning it assumes a straight-line relationship between each independent variable and the dependent variable.
+ - ex) $y = w_0 + w_1*x_1 + w_2*x_2 + \dots + w_D*x_D, y = w_0 + w_1*x_1 + w_2*x^2$
- Non-linear regression: a model can't be implemented by a linear function
- - ex) $log(y) = w_0 + w_1*log(x), y = max(x, 0)$
+ - ex) $log(y) = w_0 + w_1*log(x), y = max(x, 0)$
## Basic Math for ML