# Vercel AI SDK Claude Code Configuration ๐Ÿค– A comprehensive Claude Code configuration for building production-ready AI applications with the Vercel AI SDK. This configuration transforms Claude Code into an expert AI SDK developer with specialized agents, custom commands, and automated workflows. ## โœจ Features This configuration provides: - **๐Ÿค– Specialized AI Agents** - Expert agents for RAG, multi-modal, streaming, tools, and providers - **โšก Custom Commands** - Slash commands for rapid AI SDK development workflows - **๐Ÿ”„ Automated Hooks** - Development lifecycle automation with formatting and validation - **๐Ÿ—๏ธ Architecture Patterns** - RAG systems, multi-modal apps, streaming interfaces, agent workflows - **๐Ÿš€ Production Ready** - Comprehensive error handling, security, monitoring, and optimization - **๐Ÿ“š Expert Knowledge** - Deep understanding from official Vercel AI SDK documentation - **๐Ÿ› ๏ธ Multi-Provider Setup** - Anthropic, OpenAI, Google, Cohere with intelligent fallbacks - **๐Ÿงช Testing Strategies** - Comprehensive testing patterns for AI applications ## ๐Ÿ“ฆ Installation 1. Copy the complete configuration to your AI project: ```bash cp -r vercel-ai-sdk/.claude your-ai-project/ cp vercel-ai-sdk/CLAUDE.md your-ai-project/ ``` 2. Install the Vercel AI SDK dependencies: ```bash npm install ai @ai-sdk/openai @ai-sdk/anthropic @ai-sdk/google @ai-sdk/cohere ``` 3. Set up your environment variables: ```bash # Copy and configure your API keys cp .env.example .env.local ``` 4. Start Claude Code - the configuration loads automatically and activates expert mode! ๐Ÿš€ ## ๐ŸŽฏ What You Get ### ๐Ÿค– Specialized AI Agents | Agent | Expertise | Use Cases | |-------|-----------|-----------| | **RAG Developer** | Embeddings, vector databases, semantic search | Knowledge bases, document retrieval, Q&A systems | | **Multi-Modal Expert** | Image/PDF processing, file uploads | Document analysis, visual AI, media processing | | **Streaming Expert** | Real-time responses, chat interfaces | Chat apps, live updates, progressive enhancement | | **Tool Integration Specialist** | Function calling, external APIs | Agents, workflows, system integrations | | **Provider Configuration Expert** | Multi-provider setup, optimization | Cost management, reliability, performance | ### โšก Custom Slash Commands | Command | Purpose | Arguments | |---------|---------|-----------| | `/ai-chat-setup` | Complete chat interface setup | `basic\|advanced\|multimodal\|rag\|agent` | | `/ai-streaming-setup` | Streaming implementation | `text\|object\|chat\|completion` | | `/ai-tools-setup` | Tool and function calling | `simple\|database\|api\|multimodal\|agent` | | `/ai-provider-setup` | Provider configuration | `single\|multi\|fallback [provider]` | | `/ai-rag-setup` | RAG system implementation | `basic\|advanced\|conversational\|agentic` | ### ๐Ÿ—๏ธ Architecture Patterns | Pattern | Description | Key Features | |---------|-------------|-------------| | **RAG Systems** | Retrieval-augmented generation | Embeddings, vector search, context injection | | **Multi-Modal Apps** | Image/PDF/media processing | File uploads, vision models, document analysis | | **Streaming Interfaces** | Real-time AI responses | Progressive updates, error recovery, interruption | | **Agent Workflows** | Tool-calling AI systems | Multi-step execution, external integrations | | **Provider Management** | Multi-provider architecture | Fallbacks, cost optimization, health monitoring | ## ๐Ÿš€ Quick Start Examples ### 1. Create a Basic Chat Interface ```bash # Use the custom command to set up everything /ai-chat-setup basic ``` This automatically creates: - API route with streaming - React component with proper error handling - TypeScript types and validation - Tailwind CSS styling ### 2. Set Up RAG System ```bash # Create a complete RAG implementation /ai-rag-setup basic ``` Generates: - Database schema with vector support - Embedding pipeline with chunking - Semantic search functionality - RAG API with context injection ### 3. Multi-Modal Application ```bash # Build image and PDF processing /ai-chat-setup multimodal ``` Includes: - File upload handling - Image/PDF processing - Multi-modal chat interface - Proper validation and security ### 4. Provider Configuration ```bash # Set up multi-provider architecture /ai-provider-setup multi anthropic ``` Creates: - Provider abstraction layer - Fallback mechanisms - Cost tracking - Health monitoring ### 5. Agent with Tools ```bash # Build function-calling agents /ai-tools-setup agent ``` Implements: - Tool definitions with Zod schemas - Multi-step execution - Error handling and retry logic - Security and rate limiting ## ๐Ÿ”ง Environment Setup Create `.env.local`: ```env # Provider API Keys ANTHROPIC_API_KEY=sk-ant-your-key-here OPENAI_API_KEY=sk-your-openai-key-here GOOGLE_GENERATIVE_AI_API_KEY=your-google-key-here COHERE_API_KEY=your-cohere-key-here # Provider Configuration DEFAULT_PROVIDER=anthropic DEFAULT_MODEL_TIER=balanced ENABLE_PROVIDER_FALLBACK=true FALLBACK_PROVIDERS=anthropic,openai,google # Usage Limits (Optional) MAX_TOKENS_PER_REQUEST=4096 DAILY_TOKEN_LIMIT=100000 COST_LIMIT_USD=50 # Database (for RAG systems) DATABASE_URL=postgresql://... VECTOR_DIMENSIONS=1536 ``` ## ๐Ÿ”„ Development Lifecycle Automation This configuration includes automated hooks that: - **Format code** automatically with Prettier after edits - **Validate API routes** and remind about security best practices - **Track dependencies** and notify about AI SDK installations - **Provide checklists** for streaming, error handling, and testing - **Monitor development** and suggest optimizations ## ๐Ÿ“Š Monitoring & Analytics - **Usage tracking** across all providers - **Cost calculation** and budget monitoring - **Performance metrics** for streaming and tools - **Error rate tracking** with automated alerts - **Health checks** for provider availability ## ๐Ÿ›ก๏ธ Security & Compliance - **API key protection** with environment validation - **Input sanitization** and validation with Zod - **Rate limiting** and abuse prevention - **Audit logging** for sensitive operations - **Privacy controls** for data handling ## ๐Ÿงช Testing Strategy - **Unit tests** for all AI components - **Integration tests** for streaming and tools - **Performance tests** under load - **Security tests** for validation and safety - **End-to-end tests** for complete workflows ## ๐Ÿš€ Deployment Ready - **Vercel Deployment** - Optimized for Vercel's Edge Runtime - **Environment Configuration** - Proper staging/production setup - **Monitoring Setup** - Usage tracking and error monitoring - **Scaling Considerations** - Auto-scaling and cost optimization ## ๐Ÿ“š Resources - [Vercel AI SDK Documentation](https://sdk.vercel.ai/docs) - [Provider Setup Guides](https://sdk.vercel.ai/providers/ai-sdk-providers) - [Example Applications](https://github.com/vercel/ai/tree/main/examples) - [Community Support](https://discord.gg/vercel) ## ๐Ÿ”— Integration This configuration works well with: - **Next.js 15** - App Router and Server Components - **shadcn/ui** - Beautiful chat interfaces - **Tailwind CSS** - Styling for AI applications - **Prisma/Drizzle** - Chat history persistence - **Vercel** - Optimal deployment platform --- **Ready to build next-generation AI applications with Claude Code and the Vercel AI SDK!** ๐Ÿš€ ๐ŸŒŸ **Star this configuration** if it enhances your AI development workflow!