--- allowed-tools: Read, Write, Edit, MultiEdit, Bash description: Enable cutting-edge experimental AI SDK features safely argument-hint: "[beta|experimental|research|custom]" --- ## Enable Experimental AI SDK Features Configure and safely enable cutting-edge AI SDK experimental features: $ARGUMENTS ### Current Experimental Status Existing experimental features: !`grep -r "experimental\|beta\|alpha" . --include="*.ts" --include="*.json" | head -5` Feature flags: !`grep -r "ENABLE_\|FLAG_" .env* 2>/dev/null | head -3 || echo "No feature flags found"` Advanced configurations: !`grep -r "streamingTimeouts\|thinkingMode\|toolCallStreaming" . --include="*.ts" | head -5` ### Experimental Feature Categories **Beta Features**: Stable experimental features ready for production testing **Experimental**: Cutting-edge features in active development **Research**: Bleeding-edge research features for experimentation **Custom**: Custom experimental implementations and modifications ### Your Task 1. **Analyze experimental feature landscape** and identify safe options 2. **Implement feature flag system** for controlled rollouts 3. **Configure experimental AI SDK options** with proper safeguards 4. **Set up A/B testing framework** for feature validation 5. **Add monitoring and telemetry** for experimental features 6. **Create fallback mechanisms** for experimental feature failures 7. **Implement gradual rollout strategy** with user controls 8. **Add comprehensive testing** for experimental features ### Implementation Requirements #### Feature Flag System - Environment-based feature control - User-level feature toggles - Percentage-based rollouts - Real-time feature flag updates - Fallback mechanisms for failures #### Safety Measures - Automatic fallback to stable features - Error isolation and reporting - Performance impact monitoring - User experience protection - Data integrity guarantees #### Experimental Configuration - Advanced streaming options - Cutting-edge model features - Research-level AI capabilities - Custom provider integrations - Performance optimizations ### Expected Deliverables 1. **Feature flag system** with environment and user controls 2. **Experimental AI SDK configurations** with safety controls 3. **A/B testing framework** for feature validation 4. **Monitoring and telemetry** for experimental features 5. **Fallback mechanisms** for reliability 6. **Documentation** for experimental feature usage 7. **Testing suite** covering experimental scenarios ### Feature Flag Infrastructure #### Core Feature Flag System ```typescript // lib/experimental/feature-flags.ts interface FeatureFlag { name: string; enabled: boolean; rolloutPercentage: number; conditions?: { userIds?: string[]; environments?: string[]; regions?: string[]; custom?: (context: any) => boolean; }; metadata?: { description: string; added: string; owner: string; stableDate?: string; }; } export class ExperimentalFeatureManager { private static instance: ExperimentalFeatureManager; private flags: Map = new Map(); private context: any = {}; static getInstance(): ExperimentalFeatureManager { if (!ExperimentalFeatureManager.instance) { ExperimentalFeatureManager.instance = new ExperimentalFeatureManager(); } return ExperimentalFeatureManager.instance; } async initialize(context: any = {}) { this.context = context; await this.loadFeatureFlags(); } private async loadFeatureFlags() { // Load from environment variables const envFlags = this.loadFromEnvironment(); // Load from external service (optional) const remoteFlags = await this.loadFromRemoteService(); // Merge flags with priority: remote > environment > defaults const allFlags = { ...this.getDefaultFlags(), ...envFlags, ...remoteFlags }; Object.entries(allFlags).forEach(([name, flag]) => { this.flags.set(name, flag as FeatureFlag); }); } private getDefaultFlags(): Record { return { 'reasoning-models': { name: 'reasoning-models', enabled: false, rolloutPercentage: 0, metadata: { description: 'Enable O1, O3-mini, and DeepSeek reasoning models', added: '2024-12-01', owner: 'ai-team', }, }, 'computer-use': { name: 'computer-use', enabled: false, rolloutPercentage: 0, conditions: { environments: ['development', 'staging'], }, metadata: { description: 'Enable Claude 3.5 Sonnet computer use capabilities', added: '2024-12-01', owner: 'automation-team', }, }, 'generative-ui': { name: 'generative-ui', enabled: true, rolloutPercentage: 100, metadata: { description: 'Enable streamUI for dynamic component generation', added: '2024-11-01', owner: 'ui-team', }, }, 'advanced-streaming': { name: 'advanced-streaming', enabled: true, rolloutPercentage: 50, metadata: { description: 'Advanced streaming patterns with multi-step and waitUntil', added: '2024-11-15', owner: 'streaming-team', }, }, 'edge-optimization': { name: 'edge-optimization', enabled: true, rolloutPercentage: 75, conditions: { environments: ['production', 'staging'], }, metadata: { description: 'Vercel Edge Runtime optimizations', added: '2024-10-01', owner: 'performance-team', }, }, 'natural-language-sql': { name: 'natural-language-sql', enabled: false, rolloutPercentage: 25, conditions: { custom: (context) => context.hasDatabase === true, }, metadata: { description: 'Natural language to SQL conversion', added: '2024-12-10', owner: 'data-team', }, }, }; } private loadFromEnvironment(): Record> { const flags: Record> = {}; // Load from environment variables if (process.env.ENABLE_REASONING_MODELS === 'true') { flags['reasoning-models'] = { enabled: true, rolloutPercentage: 100 }; } if (process.env.ENABLE_COMPUTER_USE === 'true') { flags['computer-use'] = { enabled: true, rolloutPercentage: 100 }; } if (process.env.ENABLE_GENERATIVE_UI === 'true') { flags['generative-ui'] = { enabled: true, rolloutPercentage: 100 }; } if (process.env.ENABLE_ADVANCED_STREAMING === 'true') { flags['advanced-streaming'] = { enabled: true, rolloutPercentage: 100 }; } if (process.env.ENABLE_EDGE_OPTIMIZATION === 'true') { flags['edge-optimization'] = { enabled: true, rolloutPercentage: 100 }; } return flags; } private async loadFromRemoteService(): Promise>> { // Optional: Load from external feature flag service try { if (process.env.FEATURE_FLAG_SERVICE_URL) { const response = await fetch(process.env.FEATURE_FLAG_SERVICE_URL, { headers: { 'Authorization': `Bearer ${process.env.FEATURE_FLAG_API_KEY}`, }, }); if (response.ok) { return await response.json(); } } } catch (error) { console.warn('Failed to load remote feature flags:', error); } return {}; } isEnabled(flagName: string, userId?: string): boolean { const flag = this.flags.get(flagName); if (!flag) return false; // Check basic enabled status if (!flag.enabled) return false; // Check conditions if (flag.conditions) { if (flag.conditions.userIds && userId) { if (!flag.conditions.userIds.includes(userId)) return false; } if (flag.conditions.environments) { const env = process.env.NODE_ENV || 'development'; if (!flag.conditions.environments.includes(env)) return false; } if (flag.conditions.regions) { const region = process.env.VERCEL_REGION || 'local'; if (!flag.conditions.regions.includes(region)) return false; } if (flag.conditions.custom) { if (!flag.conditions.custom(this.context)) return false; } } // Check rollout percentage if (flag.rolloutPercentage < 100) { const hash = this.getUserHash(userId || 'anonymous', flagName); if (hash % 100 >= flag.rolloutPercentage) return false; } return true; } private getUserHash(userId: string, flagName: string): number { // Simple hash function for consistent user bucketing let hash = 0; const str = `${userId}-${flagName}`; for (let i = 0; i < str.length; i++) { const char = str.charCodeAt(i); hash = ((hash << 5) - hash) + char; hash = hash & hash; // Convert to 32-bit integer } return Math.abs(hash); } getAllFlags(): Map { return new Map(this.flags); } updateFlag(flagName: string, updates: Partial) { const existing = this.flags.get(flagName); if (existing) { this.flags.set(flagName, { ...existing, ...updates }); } } async trackFeatureUsage(flagName: string, userId?: string, metadata?: any) { const usage = { flag: flagName, userId, timestamp: Date.now(), context: this.context, metadata, }; // Send to analytics service await this.sendUsageToAnalytics(usage); } private async sendUsageToAnalytics(usage: any) { try { if (process.env.ANALYTICS_ENDPOINT) { await fetch(process.env.ANALYTICS_ENDPOINT, { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify(usage), }); } } catch (error) { console.warn('Failed to send feature usage analytics:', error); } } } // Singleton instance export const featureFlags = ExperimentalFeatureManager.getInstance(); ``` #### Experimental AI SDK Wrapper ```typescript // lib/experimental/ai-sdk-experimental.ts import { streamText, generateText, streamUI, generateObject } from 'ai'; import { featureFlags } from './feature-flags'; export interface ExperimentalOptions { userId?: string; fallbackOnError?: boolean; trackUsage?: boolean; } export class ExperimentalAISDK { static async streamText(config: any, options: ExperimentalOptions = {}) { const { userId, fallbackOnError = true, trackUsage = true } = options; // Apply experimental features based on flags const experimentalConfig = await this.applyExperimentalFeatures(config, userId); try { const result = streamText(experimentalConfig); if (trackUsage) { await this.trackExperimentalUsage(experimentalConfig, userId); } return result; } catch (error) { if (fallbackOnError) { console.warn('Experimental feature failed, falling back to stable:', error); return streamText(config); // Fallback to original config } throw error; } } static async generateText(config: any, options: ExperimentalOptions = {}) { const { userId, fallbackOnError = true, trackUsage = true } = options; const experimentalConfig = await this.applyExperimentalFeatures(config, userId); try { const result = await generateText(experimentalConfig); if (trackUsage) { await this.trackExperimentalUsage(experimentalConfig, userId); } return result; } catch (error) { if (fallbackOnError) { console.warn('Experimental feature failed, falling back to stable:', error); return generateText(config); } throw error; } } static async streamUI(config: any, options: ExperimentalOptions = {}) { const { userId, fallbackOnError = true, trackUsage = true } = options; if (!featureFlags.isEnabled('generative-ui', userId)) { throw new Error('Generative UI is not enabled for this user'); } try { const result = streamUI(config); if (trackUsage) { await featureFlags.trackFeatureUsage('generative-ui', userId, { toolCount: Object.keys(config.tools || {}).length, }); } return result; } catch (error) { if (fallbackOnError) { // Fallback to regular text streaming console.warn('StreamUI failed, falling back to streamText:', error); return streamText({ ...config, text: ({ content }) => content, // Simple text output }); } throw error; } } private static async applyExperimentalFeatures(config: any, userId?: string) { const experimentalConfig = { ...config }; // Advanced streaming features if (featureFlags.isEnabled('advanced-streaming', userId)) { experimentalConfig.experimental_streamingTimeouts = { streamingTimeout: 45000, completeTimeout: 120000, keepAliveInterval: 5000, }; experimentalConfig.experimental_toolCallStreaming = true; experimentalConfig.experimental_continueSteps = true; await featureFlags.trackFeatureUsage('advanced-streaming', userId); } // Reasoning models if (featureFlags.isEnabled('reasoning-models', userId)) { if (config.model?.includes?.('o1') || config.model?.includes?.('reasoner')) { experimentalConfig.experimental_reasoning = true; experimentalConfig.experimental_thinkingMode = 'visible'; experimentalConfig.experimental_thinkingTokens = true; await featureFlags.trackFeatureUsage('reasoning-models', userId); } } // Edge optimizations if (featureFlags.isEnabled('edge-optimization', userId)) { experimentalConfig.experimental_edgeOptimization = { enableCompression: true, enableKeepAlive: true, connectionPooling: true, }; experimentalConfig.experimental_memoryManagement = { maxTokensInMemory: 25000, enableGarbageCollection: true, cleanupInterval: 30000, }; await featureFlags.trackFeatureUsage('edge-optimization', userId); } return experimentalConfig; } private static async trackExperimentalUsage(config: any, userId?: string) { const experimentalFeatures = []; if (config.experimental_streamingTimeouts) { experimentalFeatures.push('advanced-streaming'); } if (config.experimental_reasoning) { experimentalFeatures.push('reasoning-models'); } if (config.experimental_edgeOptimization) { experimentalFeatures.push('edge-optimization'); } for (const feature of experimentalFeatures) { await featureFlags.trackFeatureUsage(feature, userId, { configuration: Object.keys(config).filter(k => k.startsWith('experimental_')), }); } } } ``` ### A/B Testing Framework #### Experiment Configuration ```typescript // lib/experimental/ab-testing.ts export interface Experiment { id: string; name: string; description: string; status: 'draft' | 'running' | 'paused' | 'completed'; variants: { id: string; name: string; percentage: number; config: any; }[]; targetAudience?: { userIds?: string[]; percentage?: number; conditions?: any; }; metrics: string[]; startDate: Date; endDate?: Date; } export class ExperimentManager { private static instance: ExperimentManager; private experiments: Map = new Map(); static getInstance(): ExperimentManager { if (!ExperimentManager.instance) { ExperimentManager.instance = new ExperimentManager(); } return ExperimentManager.instance; } async initialize() { await this.loadExperiments(); } private async loadExperiments() { // Load experiments from configuration const defaultExperiments: Experiment[] = [ { id: 'reasoning-vs-standard', name: 'Reasoning Models vs Standard Models', description: 'Compare performance of O1 reasoning models vs standard models', status: 'running', variants: [ { id: 'control', name: 'Standard Model', percentage: 50, config: { useReasoning: false } }, { id: 'treatment', name: 'Reasoning Model', percentage: 50, config: { useReasoning: true } }, ], targetAudience: { percentage: 10 }, metrics: ['response_quality', 'latency', 'cost', 'user_satisfaction'], startDate: new Date('2024-12-01'), endDate: new Date('2024-12-31'), }, { id: 'streaming-optimization', name: 'Advanced Streaming vs Basic Streaming', description: 'Test advanced streaming features vs basic streaming', status: 'running', variants: [ { id: 'control', name: 'Basic Streaming', percentage: 70, config: { advancedStreaming: false } }, { id: 'treatment', name: 'Advanced Streaming', percentage: 30, config: { advancedStreaming: true } }, ], metrics: ['latency', 'error_rate', 'user_engagement'], startDate: new Date('2024-11-15'), endDate: new Date('2024-12-15'), }, ]; defaultExperiments.forEach(exp => { this.experiments.set(exp.id, exp); }); } getVariant(experimentId: string, userId: string): any { const experiment = this.experiments.get(experimentId); if (!experiment || experiment.status !== 'running') { return null; } // Check if user is in target audience if (!this.isUserInAudience(experiment, userId)) { return null; } // Determine variant based on user hash const hash = this.getUserHash(userId, experimentId); let cumulativePercentage = 0; for (const variant of experiment.variants) { cumulativePercentage += variant.percentage; if (hash % 100 < cumulativePercentage) { return variant; } } return experiment.variants[0]; // Fallback to first variant } private isUserInAudience(experiment: Experiment, userId: string): boolean { if (!experiment.targetAudience) return true; if (experiment.targetAudience.userIds) { return experiment.targetAudience.userIds.includes(userId); } if (experiment.targetAudience.percentage) { const hash = this.getUserHash(userId, experiment.id); return (hash % 100) < experiment.targetAudience.percentage; } return true; } private getUserHash(userId: string, experimentId: string): number { let hash = 0; const str = `${userId}-${experimentId}`; for (let i = 0; i < str.length; i++) { const char = str.charCodeAt(i); hash = ((hash << 5) - hash) + char; hash = hash & hash; } return Math.abs(hash); } async recordMetric(experimentId: string, userId: string, metric: string, value: number) { const variant = this.getVariant(experimentId, userId); if (!variant) return; const record = { experimentId, variantId: variant.id, userId, metric, value, timestamp: Date.now(), }; await this.sendMetricToAnalytics(record); } private async sendMetricToAnalytics(record: any) { try { if (process.env.EXPERIMENT_ANALYTICS_ENDPOINT) { await fetch(process.env.EXPERIMENT_ANALYTICS_ENDPOINT, { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify(record), }); } } catch (error) { console.warn('Failed to send experiment metric:', error); } } } export const experiments = ExperimentManager.getInstance(); ``` ### API Integration #### Experimental API Route ```typescript // app/api/experimental/chat/route.ts import { ExperimentalAISDK } from '@/lib/experimental/ai-sdk-experimental'; import { experiments } from '@/lib/experimental/ab-testing'; import { anthropic } from '@ai-sdk/anthropic'; export const runtime = 'edge'; export const maxDuration = 300; export async function POST(req: Request) { const { messages, userId } = await req.json(); try { // Get experiment variant const reasoningExperiment = experiments.getVariant('reasoning-vs-standard', userId); const streamingExperiment = experiments.getVariant('streaming-optimization', userId); // Configure based on experiments const config = { model: reasoningExperiment?.config.useReasoning ? anthropic('claude-3-sonnet-20240229') // Would use O1 in real implementation : anthropic('claude-3-sonnet-20240229'), messages, }; // Use experimental SDK const result = await ExperimentalAISDK.streamText(config, { userId, fallbackOnError: true, trackUsage: true, }); // Record experiment metrics if (reasoningExperiment) { // This would be implemented with actual metrics await experiments.recordMetric('reasoning-vs-standard', userId, 'request_count', 1); } return result.toUIMessageStreamResponse(); } catch (error) { console.error('Experimental chat error:', error); // Fallback to stable implementation const result = await ExperimentalAISDK.streamText({ model: anthropic('claude-3-sonnet-20240229'), messages, }, { userId, fallbackOnError: false }); return result.toUIMessageStreamResponse(); } } ``` ### Monitoring and Safety #### Experimental Feature Monitoring ```typescript // lib/experimental/monitoring.ts export class ExperimentalMonitoring { static async recordFeaturePerformance( featureName: string, metrics: { latency?: number; errorRate?: number; userSatisfaction?: number; cost?: number; }, userId?: string ) { const record = { feature: featureName, metrics, userId, timestamp: Date.now(), environment: process.env.NODE_ENV, version: process.env.APP_VERSION || 'unknown', }; await this.sendToMonitoring(record); } static async checkFeatureHealth(featureName: string): Promise { // Check if feature is performing within acceptable parameters const healthData = await this.getFeatureHealthData(featureName); return ( healthData.errorRate < 0.05 && // Less than 5% error rate healthData.latency < 5000 && // Less than 5 second latency healthData.userSatisfaction > 0.7 // Above 70% satisfaction ); } private static async sendToMonitoring(record: any) { // Send to monitoring service console.log('Experimental Feature Metrics:', record); } private static async getFeatureHealthData(featureName: string) { // This would fetch real health data from monitoring service return { errorRate: Math.random() * 0.1, latency: Math.random() * 3000, userSatisfaction: 0.7 + (Math.random() * 0.3), }; } } ``` ### Usage and Safety Guidelines - **Feature flags**: Control experimental features with environment variables and remote configuration - **A/B testing**: Run controlled experiments to validate new features - **Fallback mechanisms**: Always provide stable alternatives for experimental features - **Monitoring**: Track performance and user experience of experimental features - **Gradual rollout**: Start with small percentages and increase based on performance - **Safety checks**: Implement automatic feature disabling for poor performance - **Documentation**: Document experimental features and their expected behavior Focus on building a robust experimental framework that enables safe innovation while protecting user experience and system stability.