--- id: 2023-12-17 aliases: December 17, 2023 tags: - link-note - Data-Science - Machine-Learning - Optimization --- # Optimization ## Math ### Partial Differentiation/Derivative - Differentiate about a specific variable - Consider others as constants - $\dfrac{\partial y}{\partial x}$ - e.g., $f(x,y) = x^2 + xy + 3$ ### Chain Rule - $\dfrac{dy}{dx} = \dfrac{dy}{du}*\dfrac{du}{dx}$ - e.g., $y = ln(u), u = 2x + 4$ ## Loss Function ### Mean Squared Error (MSE) - $L = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y_i})^2$ ## Parameter Calculation ### Least Square Method (LSM) - Minimize error of data - a: slope (coefficient) - b: intercept - $L = \sum_{i=1}^{N} (y_i - (ax_i + b))^2$ #### Method 1. - $0 = \dfrac{\partial L}{\partial a} = \sum_{i=1}^{N} 2(y_i - (ax_i + b))(-x_i) = 2(a\sum_{i=1}^{N} x_i^2 + b\sum_{i=1}^{N} x_i - \sum_{i=1}^{N} x_iy_i)$ - $0 = \dfrac{\partial L}{\partial b} = \sum_{i=1}^{N} 2(y_i - (ax_i + b))(-1) = 2(a\sum_{i=1}^{N} x_i + b\sum_{i=1}^{N}1 - \sum_{i=1}^{N} y_i)$ - $a^* = \dfrac{\sum_{i=1}^{N}(x-\bar{x})(y-\bar{y})}{\sum_{i=1}^{N}(x-\bar{x})^2}$ - $b^* = \bar{y} - a^*\bar{x}$ #### Method 2. - Partial differentiation with respect to matrix $||Y - WX||^2$ - $-2X^T(Y-WX) = 0$ - $W = (X^TX)^{-1}X^TY$