summaryrefslogtreecommitdiff
path: root/SI/Resource/Fundamentals of Data Mining/Content/Kernel K-Means.md
diff options
context:
space:
mode:
Diffstat (limited to 'SI/Resource/Fundamentals of Data Mining/Content/Kernel K-Means.md')
-rw-r--r--SI/Resource/Fundamentals of Data Mining/Content/Kernel K-Means.md39
1 files changed, 39 insertions, 0 deletions
diff --git a/SI/Resource/Fundamentals of Data Mining/Content/Kernel K-Means.md b/SI/Resource/Fundamentals of Data Mining/Content/Kernel K-Means.md
new file mode 100644
index 0000000..828a053
--- /dev/null
+++ b/SI/Resource/Fundamentals of Data Mining/Content/Kernel K-Means.md
@@ -0,0 +1,39 @@
+---
+id: Kernel K-Means
+aliases:
+ - *Kernel K-Means Clustering*
+tags: []
+---
+
+## _Kernel K-Means Clustering_
+
+- _Kernel K-Means_ can be used to detect non-convex clusters
+ - A region is **convex** if it contains all the line segments connecting any
+ pair of its points. Otherwise, it is **concave**
+ - _K-Means_ can only detect clusters that are **linearly** separable
+- <u>Idea</u>: Project data onto the high-dimensional kernel space, and then
+ perform _K-Means_ clustering
+ - Map data points in the input space onto a high-demensional feature space
+ using the kernel function ![[CleanShot 2023-10-24 at 21.42.19@2x.png]]
+ - Perform _K-Means_ on the mapped feature space
+- Computational complexity (time and space) is higher than K-Means
+ - Need to compute and store _n x n_ kernel matrix generated from the kernel
+ function on the original data, where _n_ is the number of points
+
+## Kernel Functions and Kernel K-Means Clustering
+
+- Typical kernel functions:
+ - Polynomial kernel of degree h: $K(X_i, X_j) = (X_i*X_j+1)^h$
+ - <u>Gaussian radial basis function (RBF) kernel</u>: $K(X_i, X_j) =
+ e^{-||X_i - X_j||^2 / 2\sigma^2}$
+ - Sigmoid kernel: $K(X_i, X_j) = tanh(KX_i*X_j - \delta)$
+- The formula for kernel matrix K for any two points $x_i, x_j \in C_k$ is
+ $K_{x_ix_j} = \phi(x_i)*\phi(x_j)$
+- The [[SSE]] criterion of _kernel K-means_: $$SSE(c) =
+ \sum_{k=1}^{K}\sum_{x_i\in{C_k}}||\phi(x_i) - c_k||^2$$
+ - The formula for the cluster centroid: $$c_k =
+ \dfrac{\sum_{x_i\in{C_k}}\phi(x_i)}{|C_k|}$$
+- Clustering can be performed without the actual individual projections
+ $\Phi(x_i)$ and $\Phi(x_j)$ for the data points $x_i, x_j \in{C_k}$ (use
+ K(Xi,Xj) instead) ![[CleanShot 2023-10-24 at 22.06.43@2x.png]] ![[CleanShot
+2023-10-24 at 22.07.05@2x.png]]