diff options
Diffstat (limited to 'SI/Resource/Data Science/Machine Learning/Contents/Optimization.md')
| -rw-r--r-- | SI/Resource/Data Science/Machine Learning/Contents/Optimization.md | 53 |
1 files changed, 53 insertions, 0 deletions
diff --git a/SI/Resource/Data Science/Machine Learning/Contents/Optimization.md b/SI/Resource/Data Science/Machine Learning/Contents/Optimization.md new file mode 100644 index 0000000..2283442 --- /dev/null +++ b/SI/Resource/Data Science/Machine Learning/Contents/Optimization.md @@ -0,0 +1,53 @@ +--- +id: 2023-12-17 +aliases: December 17, 2023 +tags: +- link-note +- Data-Science +- Machine-Learning +- Optimization +--- + +# Optimization + +## Math + +### Partial Differentiation/Derivative + +- Differentiate about a specific variable +- Consider others as constants +- $\dfrac{\partial y}{\partial x}$ +- e.g., $f(x,y) = x^2 + xy + 3$ + +### Chain Rule + +- $\dfrac{dy}{dx} = \dfrac{dy}{du}*\dfrac{du}{dx}$ +- e.g., $y = ln(u), u = 2x + 4$ + +## Loss Function + +### Mean Squared Error (MSE) + +- $L = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y_i})^2$ + +## Parameter Calculation + +### Least Square Method (LSM) + +- Minimize error of data +- a: slope (coefficient) +- b: intercept +- $L = \sum_{i=1}^{N} (y_i - (ax_i + b))^2$ + +#### Method 1. + +- $0 = \dfrac{\partial L}{\partial a} = \sum_{i=1}^{N} 2(y_i - (ax_i + b))(-x_i) = 2(a\sum_{i=1}^{N} x_i^2 + b\sum_{i=1}^{N} x_i - \sum_{i=1}^{N} x_iy_i)$ +- $0 = \dfrac{\partial L}{\partial b} = \sum_{i=1}^{N} 2(y_i - (ax_i + b))(-1) = 2(a\sum_{i=1}^{N} x_i + b\sum_{i=1}^{N}1 - \sum_{i=1}^{N} y_i)$ +- $a^* = \dfrac{\sum_{i=1}^{N}(x-\bar{x})(y-\bar{y})}{\sum_{i=1}^{N}(x-\bar{x})^2}$ +- $b^* = \bar{y} - a^*\bar{x}$ + +#### Method 2. + +- Partial differentiation with respect to matrix $||Y - WX||^2$ +- $-2X^T(Y-WX) = 0$ +- $W = (X^TX)^{-1}X^TY$
\ No newline at end of file |
